facebook

Statistics lessons in Alexandria

Find your perfect private statistics tutor in Alexandria.
Learn statistics with our teachers at home or in their studio.

0 statistics teachers in Alexandria

0 teachers in my wish list
+

0 statistics teachers in Alexandria

Trusted teacher: Class Description: In today's digital age, statistical analysis plays a crucial role in making informed decisions for businesses and organizations. This comprehensive statistics class, "Statistical Analysis for the Digital Age: Exploring Descriptive and Inferential Stats with Microsoft Excel," is designed to provide you with the knowledge and skills needed to navigate the world of data using Microsoft Excel. From the basics of descriptive statistics to the intricacies of inferential statistics, this course will take you on a journey through the fundamental concepts and techniques used in statistical analysis. You will learn how to collect, organize, and interpret data using the powerful capabilities of Microsoft Excel, including its worksheets, Data Analysis Tool, and the PhStat2 add-in. To enhance your learning experience, this course will focus exclusively on utilizing Microsoft Excel. Through practical exercises and real-world examples, you will develop proficiency in Microsoft Excel's built-in features and functionalities for statistical analysis. You will learn how to effectively use Excel's worksheets, leverage the Data Analysis Tool, and utilize the PhStat2 add-in to perform various statistical analyses. By the end of this course, you will have a solid foundation in statistical analysis using Microsoft Excel. You will be equipped with the skills to confidently navigate data, perform meaningful analyses, and make data-driven decisions that drive success in today's digital landscape. Key Topics Covered: Chapter 1: Introduction to Statistics • Definition of statistics • Role of statistics in data analysis and decision-making • Differentiating descriptive and inferential statistics Chapter 2: Types of Statistics • Descriptive statistics: Summarizing and describing data • Inferential statistics: Making inferences and drawing conclusions about populations based on sample data Chapter 3: Types of Variables • Categorical variables: Nominal and ordinal scales • Continuous variables: Interval and ratio scales Chapter 4: Descriptive Statistics: Measures of Central Tendency • Mean, median, and mode • Choosing appropriate measures based on data characteristics Chapter 5: Descriptive Statistics: Measures of Variation • Range, variance, and standard deviation • Interpreting variation in data Chapter 6: Descriptive Statistics: Measures of Shape • Skewness and kurtosis • Understanding the distributional characteristics of data Chapter 7: Data Visualization: Choosing the Right Chart • Histograms: Displaying the distribution of continuous data • Pie charts: Representing proportions or percentages • Column and Bar charts: Comparing categories or groups • Line charts: Visualizing trends or time-series data • Guidelines for selecting appropriate charts based on data types and analysis objectives Chapter 8: Probability and Counting • Sample Space • Events • Counting Sample Points • Probability of an Event • Additive Rules • Conditional Probability • Independence and the Product Rule • Bayes’ Rule Chapter 9: Random Variables and Probability Distributions • Concept of a Random Variable • Discrete Probability Distributions • Continuous Probability Distributions • Joint Probability Distributions Chapter 10: Mathematical Expectation • Mean of a Random Variable • Variance and Covariance of Random Variables • Means and Variances of Linear Combinations of Random Variables Chapter 11: Some Discrete Probability Distributions • Introduction and Motivation • Binomial and Multinomial Distributions • Hypergeometric Distribution • Negative Binomial and Geometric Distributions • Poisson Distribution and the Poisson Process Chapter 12: Some Continuous Probability Distributions • Continuous Uniform Distribution • Normal Distribution • Areas under the Normal Curve • Applications of the Normal Distribution • Normal Approximation to the Binomial • Gamma and Exponential Distributions • Chi-Squared Distribution Chapter 13: Fundamental Sampling Distributions and Data Descriptions • Random Sampling • Some Important Statistics • Sampling Distributions • Sampling Distribution of Means and the Central Limit Theorem • Sampling Distribution of S2 • t-Distribution • F-Distribution • Quantile and Probability Plots Chapter 14: One- and Two-Sample Estimation Problems • Statistical Inference • Classical Methods of Estimation • Single Sample: Estimating the Mean • Standard Error of a Point Estimate • Prediction Intervals • Tolerance Limits • Two Samples: Estimating the Difference between Two Means • Paired Observations • Single Sample: Estimating a Proportion • Two Samples: Estimating the Difference between Two Proportions • Single Sample: Estimating the Variance • Two Samples: Estimating the Ratio of Two Variances • Maximum Likelihood Estimation Chapter 15: One- and Two-Sample Tests of Hypotheses • Statistical Hypotheses: General Concepts • Testing a Statistical Hypothesis • The Use of P-Values for Decision Making in Testing Hypotheses • Single Sample: Tests Concerning a Single Mean • Two Samples: Tests on Two Means • Choice of Sample Size for Testing Means • Graphical Methods for Comparing Means • One Sample: Test on a Single Proportion • Two Samples: Tests on Two Proportions • One- and Two-Sample Tests Concerning Variances • Goodness-of-Fit Test • Test for Independence (Categorical Data) Chapter 16: Analysis of Variance (ANOVA) • Comparing means across multiple groups • One-way and two-way ANOVA Chapter 17: Chi-Square Test • Testing relationships between categorical variables • Assessing independence and goodness-of-fit Chapter 18: Simple Linear Regression and Correlation • Introduction to Linear Regression • The Simple Linear Regression Model • Least Squares and the Fitted Model • Properties of the Least Squares Estimators • Inferences Concerning the Regression Coefficients • Prediction • Choice of a Regression Model • Analysis-of-Variance Approach • Test for Linearity of Regression: Data with Repeated Observations • Data Plots and Transformations • Correlation Chapter 19: Multiple Linear Regression and Certain Nonlinear Regression Models • Estimating the Coefficients • Linear Regression Model Using Matrices • Properties of the Least Squares Estimators • Inferences in Multiple Linear Regression • Choice of a Fitted Model through Hypothesis Testing Throughout the course, you will engage in practical exercises, real-world examples, and data analysis tasks to reinforce your understanding of statistical concepts and techniques. You will also have the opportunity to apply these skills using statistical software tools to gain hands-on experience with data analysis. By the end of this course, you will have a solid grasp of both descriptive and inferential statistics, enabling you to confidently explore, analyze, and interpret data in various contexts. Whether you are a student, professional, or an individual seeking to enhance your data analysis skills, this course will empower you to make informed decisions based on statistical insights. Join us on this statistical journey and unlock the foundations of statistical analysis. Enroll now in the "Statistical Foundations: Exploring Descriptive and Inferential Analysis" course to develop your statistical proficiency and leverage the power of data-driven decision-making, including the use of charts for effective data visualization and interpretation.
Math · Statistics · Algebra
Statistics
Trusted teacher: I teach probability, basic and advanced statistics. WHAT IS ABOVE ALL PRIMARY IS TO AVOID THE SUPERIOR / UNIVERSITY PEDAGOGICAL APPROACH (IN MY OWN TOO FORMAL AND NON-INTUITIVE) BY DECONSTRUCTING IT IN TERMS AND CONCEPTS MORE EASILY, FAMILIAR, UNDERSTANDING AND UNDERSTANDING !!! Student in IT Management Engineer for 4 years now, I am fond of statistics and its applications of all kinds (Econometrics, Data Science, Machine Learning, Operational Research, etc.). Regarding the course itself, everything depends on the student using my services. I would expect the student to tell me exactly what the problem they are having (if they are able to do it, which is not always the case when we are lost in a topic), what is the goal to be achieved and if he preaches one way to another to achieve it. With me, the student is king and it is therefore he who totally opts for the pedagogy he wants (I am open to really everything!). Second, I myself have always been quite a slow learner to understand, which makes me a very patient and emphatic teacher. I obviously don't promise to have the answer to everything, all the time, right away. I even hope that the pupil gives me a glue from time to time, so that we think about it for a while together and that I too learn something in my turn. EXPERIENCE -> + Support in 2nd baccalaureate Criminology: Introduction to Jurimetry + Support for the 2nd master's degree in Political Sciences: Manipulation of the R language in R-studio for research work + Support in 1st Bio-Engineer: Introduction and handling of the Python computer language. Do not hesitate to contact me for more information :)
Statistics
Trusted teacher: Mon objectif est de préparer les étudiants à une compréhension profonde des sujets qu'ils veulent améliorer en résolvant les exercices ensemble, en assignant des devoirs, et en expliquant le contexte de la vie réelle autour des problèmes mathématiques pour motiver l'étudiant. Les mathématiques sont le langage de l'univers et, comme pour tout autre langage, il faut pratiquer, pratiquer et pratiquer. Je pense que n'importe qui, avec suffisamment de pratique, peut maîtriser les mathématiques. J'enseigne les mathématiques au niveau du lycée (de la 6e à la 12e année), au niveau de la licence et au niveau de la maîtrise pour les programmes d'ingénierie. J'ai de l'expérience dans l'enseignement de différentes matières, notamment - Algèbre - Géométrie/Trigonométrie - Topologie - Equations différentielles - Algèbre linéaire - Calcul numérique - Algèbre linéaire numérique - Analyse - Théorie des probabilités et statistiques Méthodologie d'enseignement : 1 - Je fais connaissance avec l'étudiant et ce qu'il espère obtenir des cours. 2 - Après environ 2 séances, je me suis familiarisé avec la façon de pensé de l'étudiant, ses points faibles et ses points forts. Chaque élève a une façon unique de penser et de traiter l'information, et en fonction de cela, les leçons sont personnalisées pour répondre à leurs besoins respectifs. Note : Préparez vos notes de cours ou votre matériel de conférence et envoyez-les avant nos sessions !
Statistics · Calculus · Math
Showing results 151 - 175 of 650151 - 175 of 650

Our students from Alexandria evaluate their Statistics teacher.

To ensure the quality of our Statistics teachers, we ask our students from Alexandria to review them.
Only reviews of students are published and they are guaranteed by Apprentus. Rated 4.7 out of 5 based on 51 reviews.

Private tuition in math, french, english beginner to advanced (Ottignies-Louvain-la-Neuve)
Coralie
Great class, always constructive and searching the way to teach something useful to my daughter. We sincerely thank you and acknowledge your concern and dedication in providing a quality education and atmosphere
Review by BORJA
Programming and Data Analysis, Matlab, Python, Fortran, SPSS
Nikolaos
Nikolas is a very depentable tutor with an abudant amount of knowledge in programming. He was very helpful in preparing me for my programming exam and I higly recommend him!
Review by KYRIAKOS
MATHEMATICS & STATISTICS TUTORING FOR ALL AGES AND EXAMINING BOARDS (Limassol)
Anthoulla
Anthoulla was able to establish a good trustful contact with the child. Her explanations are simple and understandable. We are very satisfied so far.
Review by VICTOR