facebook

Engineering lessons in Canada

Find your perfect private engineering tutor in Canada.
Learn engineering with our teachers at home or in their studio.

10 engineering teachers in Canada

0 teachers in my wish list
+

10 engineering teachers in Canada

Description: This immersive course is designed to introduce participants to the core concepts of programming through three versatile languages: C, C++, and Python. The course caters to beginners and enthusiasts aiming to develop a strong foundation in programming logic and syntax using these languages. Topics Covered: 1. Introduction to C Programming: Basic structure, variables, and data types. Control structures: loops and decision-making statements. Functions and modular programming. Arrays, strings, and pointers. 2. Intermediate C++ Programming: Object-oriented programming (OOP) concepts: classes, objects, inheritance, and polymorphism. Standard Template Library (STL): Containers, algorithms, and iterators. File handling and streams in C++. 3. Basic Python Programming: Python syntax, data types, and basic operations. Control flow: loops and conditional statements. Functions, modules, and libraries. Introduction to data structures: lists, dictionaries, and tuples. Teaching Methodology: Layered Learning Approach: Begin with fundamental programming concepts using C and gradually progress to object-oriented concepts with C++. Transition to Python to introduce high-level concepts and application-oriented programming. Practical Coding Assignments: Implement coding exercises and projects in each language to reinforce learning and practical application. Hands-on Workshops: Conduct workshops and coding sessions to apply learned concepts in real-time scenarios. Target Audience: This course is suitable for beginners and individuals with minimal programming experience who wish to acquire a solid understanding of programming logic using C, C++, and Python. Outcome: Participants will gain proficiency in C and C++ fundamentals, along with a basic understanding of Python, empowering them to write, understand, and analyze code in these languages.
Computer programming · Science · Engineering
Aeronautics is an incredibly captivating and cutting-edge field that has the power to inspire students to pursue their studies in aerospace engineering. It offers a fascinating blend of science and technology, allowing students to explore the principles of flight, aerodynamics, and aircraft design. With aeronautics, students can venture into the realm of space exploration, unmanned aerial vehicles, supersonic flight, and future air transportation technologies like electric aircraft and vertical take-off and landing vehicles. The field of aeronautics presents endless opportunities for innovation and pushing the boundaries of what's possible in the skies, making it an enticing and rewarding area of study for aspiring aerospace enthusiasts. TOPICS COVERED: Aerodynamics: The study of airflow around aircraft and how it affects their performance Aircraft Structures: Understanding the design and analysis of aircraft components for safety and durability. Propulsion Systems: Learning about different propulsion technologies, such as jet engines and propellers. Flight Mechanics: Analyzing the dynamics and control of aircraft during flight. Aircraft Design: The process of conceptualizing, modeling, and optimizing aircraft configurations. Aircraft Stability and Control: Understanding the stability and control characteristics of aircraft during various maneuvers. Aerospace Materials: Learning about materials used in aircraft construction and their properties. Unmanned Aerial Systems (UAS): Understanding the design and operation of drones and other unmanned aircraft.
Engineering · Structural engineering · Mechanical engineering
In this class, you will be learning how to use Visual Basic for Applications (VBA) to program and solve engineering problems. The type of class can be adapted to your needs, from a beginner (VBA basics) to an experienced user (advanced numerical methods). Complete Program: Programming -Introduction to Visual Basic for Applications (VBA) -Subroutines basics: variables and syntax -Indexed variables and input data -Communication Excel/VBA: read and write to/from the worksheet -Loops and conditional statements -External Functions Numerical Methods -Introduction to numerical methods: linear, non-linear equations and convergence criteria -Errors and approximations -Solving non-linear equations – Bracketing methods: Bisection and False Position -Solving non-linear equations – Iterative methods: Newton, Secant and Fixed Point -Solving systems of linear equations – Direct methods (n < 1000): Gauss Elimination and LU Decomposition -Solving systems of linear equations – Direct methods (n < 3): Substitution method and Crame Rule -Solving systems of linear equations – Direct methods (Tridiagonal matrices): Thomas algorithm -Solving systems of linear equations – Iterative methods (large matrices): Jacobi, Gauss-Seidel -Solving systems of linear equations – Gauss-Seidel convergence and relaxations -Solving systems of non-linear equations – Newton and Fixed-point -Differentiation: Taylor series and approximations -Differentiation: first and second order differences: centred, forward and backward -Integration: Lagrange interpolating polynomials -Integration: Trapezoidal, Simpson’s 1/3, Simpson’s 3/8 Rules -Integration: Composite rules Advanced Numerical Methods -Introduction to ODE’s and PDE’s -Solving ODE’s – Initial Value Problems: Euler and Runge-Kutta -Solving ODE’s – Boundary Value Problems: Shooting Method, Finite Differences -Solving ODE’s – Finite Differences for linear BVP: Gauss and Thomas -Solving ODE’s – Finite Differences for non-linear BVP: Newton-Raphson, Gauss-Seidel -Solving PDE’s – Discretization and transformation into SODE -Solving PDE’s – Application to Elliptic and Navier-Stokes -Solving PDE’s – SEDO’s Stiff problems: Runge-Kutta and Predictor/Corrector methods.
Engineering · Computer modeling
Showing results 76 - 100 of 24176 - 100 of 241